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Dynamics of curved domain boundaries in convection patterns
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Curved domain boundaries (DB’s) between locally stable convection patterns are studied near the on-
set of convection, within the framework of the Newell-Whitehead-Segel theory [J. Fluid Mech. 38, 279
(1969); 38, 203 (1969)]. We consider the case where there exists a Lyapunov functional. By means of
asymptotic methods, the equations of motion for DB’s are derived, and their solutions are obtained. It is
shown that the behavior of a DB depends strongly on the difference between Lyapunov functional’s den-
sities of the coexisting patterns. In the case of a nonzero difference, the normal velocity depends on the
orientation of the DB, and caustics can be produced in a finite time. In the case of zero difference, the
normal velocity depends on both orientation and distortion of the DB, and the DB tends typically to

straighten after a long time.

PACS number(s): 47.20.Ky, 47.27.Te

I. INTRODUCTION

The convection patterns arising spontaneously from a
random perturbation in a horizontal layer of fluid heated
from below, contain different types of defects. The inves-
tigation of the defects dynamics was started in the work
of Siggia and Zippelius [1] and continues in a large num-
ber of papers (for review, see Ref. [2]). Among them, one
can observe linear defects whose existence is a result of
the multistability of convection patterns. For instance, if
the roll patterns are stable, rolls of different orientations
can arise in different spatial domains. These domain
boundaries (DB’s) are separated by intermediate zones
where rectangular [3-5] or hexagonal [5] patterns are
sandwiched. Another type of DB is expected in the pa-
rameter region where both roll and hexagonal patterns
are stable [6]. They separate the domains of patterns
with different spatial symmetries.

Pomeau [7] showed that the dynamics of DB in none-
quilibrium patterns near the instability threshold can be
described by amplitude equations [8,9]

da;
L8 (1.1)
ot da}
where j=1,..., N (in every equation in which j appears

and is not summed over, the equation is valid for each
value of j), with a certain Lyapunov functional
Ha s+« »dy). On the basis of these equations, the plane
DB’s in convection patterns were considered in Ref. [5].
These plane DB’s move with a constant velocity in the
direction of the patterns with higher density of Lyapunov
functional (LF), and do not move if the densities of LF
are equal. It turns out that the velocity of a DB and its
contribution to the LF depend on its orientation. The ex-
perimental observations [10] confirm qualitatively these
theoretical predictions.

In the present paper, DB’s of curved shape are studied.

II. FORMULATION OF THE PROBLEM
We consider the convection in an infinite horizontal
layer heated from below when the Rayleigh number R is

1063-651X/94/50(2)/1661(4)/$06.00 50

close to the critical value R, [R =R (1+8%),6<<1]. We
use the Newell-Whitehead-Segel [8,9] approach. Disre-
garding the possibility of zigzag instability of solutions
and phase diffusion effects, we start with the following
system of equations for real amplitudes 4;(X, Y, 7):

V(A4,,..., Ay)
a4,

A
L —(n;V)4;=

3, ) (2.1

where the potential function V is defined by

N N N
V=_%r E Aj2+71'2kzlﬂjk‘4j2’413+% 2 44,4, ,
j=1K=

i=1 ILm,n

(2.2)

and it is assumed that V is bounded from below, {n ; }isa
set of unit vectors. The details can be found in Refs.
[5,7,8, and 9].

In Egs. (2.1) and (2.2), the indices /,m,n are such that
the corresponding modes constitute a resonantly coupled
triad, i.e.,, n;+n,, +n,=0, 4 ;j are the scaled amplitude
functions, the parameter I' is the scaled linear growth
rate of the disturbance with the critical instability wave
number, the nonlinear interaction coefficients 8 ik depend
on the angle 6 between n; and n,. The resonant cubic
terms should be dropped if the dependence of the viscosi-
ty and heat conductivity on the temperature is negligible.

Equation (2.1) can be written also in the form

04; 5F

——j = —— -3
where F, the Lyapunov functional, is

F=[dxdY |} 3 [(n;- V24, P+V]. 2.4)

J

In real systems, the domains of ordered patterns arise
from disordered disturbances induced by noise, after a
certain transient ordering process. To simplify the prob-
lem, we assume that initial disturbances have a spatial
scale of e !>>1. We then expect that large homogene-
ous domains will arise, separated by domain boundaries
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with a much smaller width.
Indeed, assuming

Aj(X,Y,7;€)=A)(x,p,7)+O(€) , (2.5)

where x =€X,y =€V, and substituting (2.5) into (2.1), we
get in €° order

d4)  av(4y,..., 4p)
ot 34)

hence if 3V /9 A;’#O for any j, except for extremal points
of ¥, then V will be a monotone function decreasing in
time. Therefore, if ¥ has a minimal value, it will tend to
that minimum for large 7.

We assume that V has several local minima, every one
of these is surrounded by a basin of attraction in which
for large 7, the function V tends to its minimum. The
“border” between every two such subdomains is a DB:
the solution for long time in each of the domains corre-
sponds to a certain convection pattern, and the DB has
different patterns on both sides. The dynamics of these
DB’s is the subject of the present paper.

, (2.6)

III. ASYMPTOTIC EXPANSIONS

In order to discuss the dynamics of DB’s, we shall use
the approach developed by Rubinstein, Sternberg, and
Keller [11]. Let us consider two adjacent sub domains
with a common DB, situated on the locus

@olx,»)=0. (3.1

The following discussion involves several time scales.
The time scale 7 is the fastest one, for slower processes
t =€t, n= ¢t are defined.

In order to determine the asymptotic expansion of the
functions 4; in the DB neighborhood, we assume that
the DB moves in such a way that its locus depends on the
slow time variables ¢ and 7. The DB is situated on
@(x,y,t,m)=0, and its initial position is
<P(X,y,0»"l)=¢’o(x,y )'

We assume that we can expand the functions 4; into
asymptotic series of the form

— 0
AJ(X, Y,t,E)—aj(Z,X,y,T,t,’ﬂ)
+eaj1(z,x,y,7',t,17)+0(62) , (3.2)

where
2= B (3.3)
By substituting (3:2) into (2.1), we obtain in €° order
0 0 2.0 0 0
_aa_'l.{._ég__aaj =(n.-V )Zaaj __aV(al?'--’aN)
or dt oz J ® azz aaj s
(3.4

and in €' order

0
aa; +§£aa} +9£1£+§¢£ da;

ar ot 3z ' ot  ay oz
241
=(n;- Vo) az; +[2(n;-V@)(n,;-V)+(n;-V)’p]
%’ N *V(al,...,al)
XL _ 5 gl : l (3.5)
iz 2, da,,0a;

In order to determine the function ¢ in (3.4), we as-

sume that for large 7 the functions a J‘-) tend to stationary

solutions which depend on z alone and are independent of
7. Let

ajo(z,x,y,r,t,77)~Qj(z,x,y,t,7]) as T—> o0 . (3.6)
We substitute (3.6) into (3.4) to obtain

aV(Q,,...,Qn) _

where a prime means 0/9z. This equation can be written
also in the form

szj de av(Q,,...,0n)
3 +v, » +

”n a ’
—(n;-Vg) j+—a?gj+ 0, (2

—(n;'n,)? =0, (3.8
(n;n/) 30, 3.8

where
n, Vol ’ v, Vol ’ s Vol - (3.9)

From the matching conditions to the outer solution,
we have boundary conditions such that Q; are different
constants far away from both sides of the DB.

IV. THE CASE OF [V]#0

From the existence condition of solutions to Eq. (3.7)
we obtain the DB equation of motion:

%?=— I[VV] , 4.1
[7 3 @)y

j=1

where [ V] is the potential difference between both sides
of the DB in steady state. With the variables (3.9) this
equation can be written in the form

v, =— [v] , 4.2)

2
f . e ds

i=1
The eigenvalue v, depends only on n so that
v, =v(ng) . (4.3)

In the general case there may be several solutions of
(3.8) or none. The existence and uniqueness of a solution
for equations of the type of (3.8) was proved by Gardner
[12] only for the case N =2 (DB with rolls on both sides).
We assume here existence and uniqueness of v, for all N.

The formula (4.2) coincides with one obtained in the
case of a plane DB [5], therefore the curved DB moves
with the same velocity as a plane DB having the same
normal.

We have found that d¢ /3t is a function of V¢, so

9p d¢

S¢ _
F dy ~ dx

. 4.4
ot “4)

Solving (4.4) by the method of characteristics, we get
the solution
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@(x,p,1)=@o(x0,0)
+[Po—490F;(q0,70)—roF (qo,70) ]t , (4.5)

where

Yo=ytF,(qo,ro)t , xo=x+F,(qqro)t ,

4o =0@o(x0,¥0)/y , ro=0@q(xg,y0)/0x ,

po=Fl(qq,ry) . (4.6)
For the explicit representation,

plx,p,t)=x—f(y,t), 4.7)

we have Vp=[1,—(3f /dy)], and we obtain instead of
(4.4),

Sf _p|of
atF

. .8
o (4.8)

The solution (4.5) is reduced to

F30=Foyo)+po—doF, (o))t - (4.9)

From (4.9) we obtain the equation:

x=foo) H[F(foyo))—foyo)F'(foyo))]t .
The time needed for a singularity to occur in the
second derivative of the DB shape is
t= 1 .
F'"(fo(o))f o (o)
Hence, at some points on the DB shape, caustics will ap-

pear after a finite interval of time. When this happens,
the equations we use are not valid anymore.

(4.10)

(4.11)

V. THE CASE OF [V]=0

If [V]=0 it follows from the DB equation of motion
(4.1) that d¢ /3t =0, and therefore the DB will not move
on the time scale of t. Equation (3.7) becomes

aV(Ql) e ’QN) —
30,

so that Q; moves only with the time scale 7.

In order to find the motion of the DB on the 7 time
scale, we must proceed to the second order Eq. (3.5).
Here we assume that the functions a j’ tend to stationary
functions of z as 7 grows to infinity in the same way as a}’.

We write

—(n;-Vg)*Q'+ 0, (5.1

aj(z,x,p,7,t,9)~P;(z,x,y,t,m) as 7> , (52)

we substitute aj1 of (5.2) into (3.5) using the relation
dp /3t =0, and we obtain

?V(Qy,...,0x)
anan

N
—(n;-V@)’P/'+ 3 P,
m=1

= 2(nj-V<p)(nj-V)+(nj'V)2<p—%% 0. (53

We calculate the solvability condition of (5.3) using the

Fredholm alternative theorem and Eq. (5.1), and we ob-
tain the DB motion equation for the case of [ ¥]=0:

N ©
3 [(n;-V)?p+(n;-Vo)n,- V)] [ 7 (Q))dz
A _ j=! _
G} N o
K > [T (Q)rdz

i=1

(5.4)

With the variables (3.9) this equation can be written in
the form

Vo 3 (n,-V) (n"'nfl)gfin"'n’)
vy = £ (5.5)
jglGj(nj-nf)
where
2
Gj(nj-nf)Ef_ww % ds .

This relation resembles the result that was obtained in
Ref. [11]. In the case of [V]=0 for the reaction-
diffusion equation it was found that v, was proportional
to the curvature of the DB.

We consider again the explicit case
(x,y,t)=x—f(y,m). It follows from Eq. (5.1) that Q;
depend only on s and on 8f/dy. Therefore, Eq. (5.4)
gives

% n?H(w)—n; n; aH,(w) n?'wde(w)
af = Iyt iy deo Jy do 2f
o N 32’
on S Hjo) %
j=1
(5.6)
where
wz% , and Hj(w)= [ " (Q)Ydz . 5.7

Thus if we denote the coefficient of 3%f /dy? in (5.6) by
K(w), and differentiate this equation with respect to y, we
get

ow

K(w)—gy—

%0 _ 3

an , (5.8)

which resembles the nonlinear diffusion equation with
K(w) as the diffusion coefficient, which is neither con-
stant nor linear. It is easy to show that if K(w) is positive
for all w, then o tends after a long time to a constant, so
that we get a plane DB after a long time. If K is negative
for some w, there may be a singularity in the DB evolu-
tion in time.

It should be mentioned that the contribution of the DB
to the Lyapunov functional (2.4) can be written in the
form of an integral along the DB:

N af
F=1 H, | oL
zfjgl 7oy

2

nfx_"fy% dy . (5.9)
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This implies the relation

2 H;

j=1

(5.10)

£l

which coincides with the inequality d 7/dn <0.

An explicit asymptotic solution for a roll-roll domain
boundary is known in the limit 0 <,, —f3,; <<1 [see Ref.
[51, Eq. (3.22)]. Using this solution we obtain

|n1X —nlya)l+2|n2x ——nZyw[

H|(w)x (5.11)

3(|n,x —nlyw|+]nzx —nzya)I 2

2]n1X —nlyw| +|n2x —nzya)|

H,(w)x<
2 3(ln1x—nlyw|+|nzx—n2yw|)2

Substitution of (5.11) and (5.12) and their derivatives into
K (w) gives the result

2An, n, —n, n,; )?
(1x2y 2X1y)

K(w)= 3 (5.13)
3(|n])r _”1y‘0]+|”2x -—nzyw|)
which is obviously positive for all .
Finally, let us assume that [ V] is of order ¢, i.e.,

[V]i=€[V']+0(€) . (5.14)
We denote
Viay,...,ay)=V%a,,...,ay)

+eVia,,...,ay)+0(€) . (5.15)

We repeat the same calculations as for [V]#0 and
[V]=0, substitute [ ¥°]=0, and instead of (5.4) we obtain

N w
—[V'1+ 3 [(0; V)@ +in; Vo)n; V)] [© (Q))dz

%9 _ j=t

(5.16)

N ]
o S [7 v

i=1

We substitute again the explicit DB
@(x,y,t)=x—f(y,m), and we repeat the same process to
obtain (4.8) and (5.8). Finally we get

dw _ 0F(w) d

an ay dy

)
dy

) (5.17)

where

N -1
Flw)=—[V1] > Hj(o)

j=1
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